The Analysis of less-Comparatives: Evidence from the Processing Cost of Downward Entailingness

Yosef Grodzinsky ${ }^{1,2}$, Galit Agmon ${ }^{1}$, Kedem Snir ${ }^{1}$, Isabelle Deschamps ${ }^{3}$ \& Yonatan
Loewenstein ${ }^{1}$

4
${ }^{1}$ Edmond and Lily Safra Center for Brain Research, The Hebrew University of Jerusalem, Israel
${ }^{2}$ Institute for Neuroscience and Medicine (INM-1)

Forschungszentrum Jülich, Germany
${ }^{3}$ Faculté de Médecine, Département de réadaptation, Université Laval, Québec, Canada

yosef.grodzinsky@mail.huji.ac.il
 Grodzinskylab.com

Funded by grants from the ISF and ELSC

Today's menu

1. Precise measurements of verification time with proportional quantifiers
2. A highly selective Downward Entailingness Cost (DEC) effect
3. A DEC effect in comparatives? A puzzle
4. Paths to a solution:
a. ironing a potential experimental wrinkle
b. the detailed analysis of less-comparatives
c. tying the $D E C$ to the number of $D E$ operators in an LF
5. Further issues (LF-complexity, antonyms, truth-value)

Speeded verification with quantifiers: a Parametric Proportion Paradigm (PPP)

Speeded verification with quantifiers: a Parametric Proportion Paradigm (PPP)

Contributors to the duration of timed sentence verification in the PPP

Building RT from its pieces:

Contributors to the duration of timed sentence verification in the PPP

Change in components with experimental manipulation:

Contributors to the duration of timed sentence verification in the PPP

Change in components with experimental manipulation:

Contributors to the duration of timed sentence verification in the PPP

Change in components with experimental manipulation:

Monotonicity in focus

Today, we look at the composition contrast:

Verification time

First PPP result: DE is more costly in RT than UE
(1) DE: Less-than-half of the circles are blue
(2) UE: More-than-half of the circles are blue

Result (more/less, many/few): $\Delta R T\left(=R T_{(1)}-R_{(2)}\right)>\operatorname{sig} 0$

$D E C_{R T}$ (DE Cost) effect:
$\Delta R T=R T_{D E}-R T_{U E}>$ sig 0.

Tribute: Barwise \& Cooper on verification and monotonicity

Verification strategies are determined by monotonicity ("witness set")

In truth determination by repeated sampling, verification of a proposition that contains a UE function requires less steps than one with a DE function
"we predict that response latencies for verification tasks involving decreasing quantifiers would be somewhat greater than for increasing
quantifiers...These predictions are based on the complexity of the checking procedure we have suggested" (1981, p. 192)

Second PPP result: DEC is specific to linguistic stimuli
(1) DE: Less-than-half of the circles are blue
(3)

UE: More-than-half of the circles are blue
(4)

Third PPP result: DEC has a specific brain locus which is part of an anatomically coherent brain piece
(1) DE: Less-than-half of the circles are blue
(2) UE: More-than-half of the circles are blue
(3)
(4)

Anterior insula

activation by DEC

Region in which The Net DEC fmRI effect for
Signal Intensity (SI)
Is significant

Net(DEC fMRI $)$ effect:
$\Delta S I_{\text {ling }}-\Delta S I_{\text {nonling }}>^{\text {sig }} 0$.

Do participants respond on partial information: phrasal comparatives

Do participants respond on partial information: phrasal comparatives

$$
\Delta \mathrm{RT}=\mathrm{RT}_{\text {fewer }}-\mathrm{RT}_{\text {more }}>\text { sig } 0
$$

But wait: do we really expect a "DEC effect" in comparatives?

The monotonicity of (phrasal) comparatives
$\{c a t s\} \subset\{m a m m a l s\},\{s n a k e s\} \subset\{r e p t i l e s\}$
(7) a. UE: More cats than snakes died \Rightarrow More mammals than snakes died
b. DE: More cats than reptiles died \Rightarrow More cats than snakes died
(8) a. DE: Fewer mammals than snakes live in deserts \Rightarrow Fewer cats than snakes live in deserts
b. UE: Fewer cats than snakes live in big cities
\Rightarrow Fewer cats than reptiles live in big cities

Comparatives are built from pieces with opposite monotonicities
(9) a. [There are more blue circles] ${ }^{U E}\left[\right.$ than yellow circles] ${ }^{D E}$
b. [There are fewer blue circles] ${ }^{D E}\left[\right.$ than yellow circles] ${ }^{U E}$

Predicted DEC RT effect (assuming additivity of UE, $D E$):

$$
\Delta \mathrm{RT}=\mathrm{RT}_{(9 \mathrm{~b})}-\mathrm{RT}_{(9 \mathrm{a})}=\mathrm{RT}_{D E+U E}-\mathrm{RT}_{U E+D E} \approx 0 .
$$

Observed DEC RT effect:

$$
\Delta R T>\text { sig } 0 .
$$

Paths toward a solution

I. Experimental path: if sentence is not read to the end, the result follows:
(10) a. UE half: There are more blue circles than yellow circles
b. DE half: There are fewer blue circles than yellow circles

If so, then the predicted effect is $\Delta R T=R T_{(10 b)}-R T_{(10 a)}>$ sig 0
Needed: an experiment that would get around this problem.
II. Theory path: the representation of monotonicity above is incorrect.
III. DEC path: redefine the DEC effect in the face of mixed monotonicity. The relation between ingredients of the equation

$$
\Delta \mathrm{RT}=\mathrm{RT}_{(9 \mathrm{~b})}-\mathrm{R} \mathrm{~T}_{(9 \mathrm{a})}=\mathrm{RT}_{D E+U E}-\mathrm{R} T_{U E+D E} \approx 0
$$

need to be reconsidered.

Down the experimental path

Goal: force participants to read instruction sentence to the end.
Trick: add a color. Inform participants that there may be a sentence-image color mismatch. Add a $3^{\text {rd }}$ response button (MM)
a. There are more blue circles than yellow circles.
b. There are fewer yellow circles than red circles.

c. There are more red circles than blue circles.

Verification time

Results and Status

Note: results only include correct T/F responses (MM excluded); error rates are very low.

Conclusion: The experimental path doesn't get us out of the puzzle.

The Seuren/Rullman puzzle

Expected: NPIs are licensed only in the "DE part" of the more-comparative
(12) a. there are more students than (there are) profs l've ever ${ }_{N P I}$ met
b. *there are more students I've ever ${ }_{N P I}$ met than (there are) profs

Expected: NPI licensing in the "DE part" of less-comparatives:
(13) there are fewer students I've ever ${ }_{\text {NPI }}$ met than (there are) profs

Unexpected: NPI licensing in the "UE part" of less-comparatives:
(14) there are fewer students than (there are) profs I've ever ${ }_{\text {NPI }}$ met

Rullman: This pattern follows if there are two DE operators in the comparative clause:
(15) a. More [(there are) blue circles] ${ }^{\text {UE }}$ [than yellow circles] ${ }^{\mathrm{DE}}$
b. Fewer [(there are) blue circles] ${ }^{\text {DE }}\left[\right.$ than yellow circles] ${ }^{D E * D E(=U E)}$

Getting there: Heim (2006) as an example
(16) a. fewer=little + many + -er
b. Little is a negation
c. -er denotes a comparison between degree intervals, contains a negation
d. Elided parts of the than-part are copied from the matrix at LF

Sketchy LFs:
a. More:
[-er [than $\exists d^{\prime} / d^{\prime}-$ many yellow circles][$\exists \mathrm{d} / \mathrm{d}$-many blue circles]]
b. Fewer:
[-er [than little $\exists d^{\prime} / d^{\prime}$ '-many [yellow circles][little $\exists \mathrm{d} / \mathrm{d}$-many [blue circles]]

counting DE operators

a. More:
[-erDE [than $\exists d^{\prime} / d^{\prime}-$ many yellow circles][$\exists \mathrm{d} / \mathrm{d}$-many blue circles]] $=1 * D E$
b. Fewer:
[-erDE [than little ${ }^{\mathrm{DE}} \exists \mathrm{d}^{\prime} / \mathrm{d}^{\prime}-$ many [yellow circles][little ${ }^{\mathrm{DE}} \exists \mathrm{d} / \mathrm{d}$-many [blue circles]]
$=3 * D E$

Reformulating the DEC effect

1. Assume that each DE operator contributes equally to processing cost. DEC is determined by the number of DE-operators, $n_{D E}$, in a given LF:

$$
\begin{aligned}
& \text { DEC } C_{R T} \text { effect (final): } \\
& n_{D E}\left(\mathrm{LF}_{2}\right)>n_{D E}\left(\mathrm{LF}_{1}\right) \Rightarrow \mathrm{RT}\left(\mathrm{LF}_{2}\right)>\operatorname{sig} \mathrm{RT}\left(\mathrm{LF}_{1}\right) .
\end{aligned}
$$

2. The DEC effect can now be used to compare the number of DE operators (all else equal).

3. The DEC effect might help us uncover hidden DE operators through RT patterns (e.g., where $2 n^{*} \mathrm{DE}=n \mathrm{UE}$).
4. In such cases, NPIs would be licensed in environments that appear UE due to an even number of DE operators.

DEC $C_{R T}$ effect (final):

$$
n_{D E}\left(\mathrm{LF}_{2}\right)>n_{D E}\left(\mathrm{LF}_{1}\right) \Rightarrow \mathrm{RT}\left(\mathrm{LF}_{2}\right)>\operatorname{sig} \mathrm{RT}\left(\mathrm{LF}_{1}\right) .
$$

- The DEC effect indexes the complexity of LF representations
- DEC is a complexity metric on LF representations metric quite unlike past metrics (e.g., DTC and related metrics)
- In the present case, DEC might help us uncover hidden DE operators through RT patterns (e.g., where $2 n^{*} D E=n U E$).
- In such cases, NPIs would be licensed in environments that appear UE due to an even number of DE operators.
- The present formulation is weak. It rank-orders LFs. On evidence, it could be strengthened, perhaps generalized to include other logical operators.

Coda: do "negative" antonyms evince a DEC effect?

A well-known problem concerns "negative" adjectives, which evince the same ambiguity, but not in every instance (a, b, may be true where c is false):
(19) a. Mary needs to drive slower than John needs to drive.
b. John needs to drive less fast than Mary needs to drive.
c. John needs to drive more slowly than Mary needs to drive.

Judgments are difficult, but RT studies may offer a way to discern negative adjectives from DE quantifiers

A verification experiment with polar antonyms and quantifiers

We talked about

1. Verification with proportional quantifiers and proportions (PPP)
2. The DEC effect - a new LF complexity metric
3. Comparatives and hidden operators
4. The DEC effect as a way to uncover hidden DE operators
5. Possible differences between DE operator types

We did not talk about

1. Possible reasons for a DEC effect and the nature of verification
2. Possible connections between DE-ness and truth value

Difference in RT patterns when data is split by truth-value

