## Semantic and syntactic processing in the human brain

Yosef Grodzinsky<br>Safra Brain Research Center, Language, Logic and Cognition Center, Cognitive Science<br>The Hebrew University of Jerusalem, Israel<br>Institute for Neuroscience and Medicine (INM-1)<br>Forschungszentrum Jülich, Germany yosef.grodzinsky@mail.huji.ac.il

## Please do not cite without permission



Franz Joseph Gall


Gall's legacy:
Mapping Principles and their Diagnostic Reflections



1. Take 1 and Take 2 never questioned the anatomical modules. Only the functional ones were debated, despite the fact that anatomical precision here is dismal.
2. Take 1 and Take 2 have both faced major empirical inconsistencies
3. Take 3: The modules that align with the neurology are smaller - they are pieces of linguistic knowledge - components of syntax, semantics, phonology, etc.
4. Agenda: define neurologically viable linguistic pieces, align with precise anatomy

## Phrenological beliefs and hopes in our midst:

The anatomist's:

- Anatomic modularity: the brain can be parsed into pieces with stable and identifiable borders (anatomical modules)
The linguist's:
- Grammatical modularity: linguistic behavior is structured; the principles governing it can be parsed into pieces
(linguistic modules)
The neurolinguist's:
- Meaningful functional anatomy: linguistic and anatomical modules Choms


## The localizationist research agenda:

- identify the linguistic modules and anatomical borders
- Seek alignment between the linguistic and the anatomical The final punch line:
Pieces of linguistic knowledge provide the right functional resolution, aligning with cytoarchitectonic borders. We are after syntax and semantics brain maps



## This mini-course

- Semantic processing in the brain: how our nervous system deals with the monotonicity of logical operators
some logical considerations, followed by multi-modal experimental program with conclusions that might have theoretical implications to compositional semantics
- Syntactic processing in the brain: the blessing of variability across individual brains and across languages and individuals speakers some anatomical considerations and techniques, with neurolinguistic studies of syntax that focus on variability


## Semantic processing in the brain: how our nervous system deals with the monotonicity of logical operators

1. Semantic processing in the brain: how our nervous system deals with the monotonicity of logical operators

- Goal

To gain insights on the structure, and the temporal and neural dynamics of quantification

- Agenda
- To look for the processing signature of quantifier monotonicity
- To test the modularity hypothesis in the context of quantifiers and quantities
- To study the neural dynamics of these processes


## Today's menu

1. Quantifier polarity in brain \& behavior
2. Polarity and sentence verification
3. Heim's "little" and comparatives:
an experimental perspective

## Experimental Paradigm

Verification with quantifiers and non-linguistic symbols

Multi-Modal Measurements
RT, errors in aphasia, fMRI signal intensity

Verification with degree quantifiers and numerosity-containing scenarios

(1) a. Many of the dots are black

b. Few of the dots are red

J\&C:

- Decomposition

Many dots are red
Neg(many) dots are red

- Fixed verification strategy

Focus on larger set of objects in image
Focus on larger set

Arguments for J\&C's view on negation in few:
negative quantifiers behave as it they contain a covert negation

Negation-containing operators license Negative Polarity Items
(2) a. *All of the students ever $_{\text {NPI }}$ climbed Mount Everest
b. None of the students ever $_{\mathrm{NPI}}$ climbed Mount Everest

Quantifiers of degree and proportion replicate this pattern
(3) a. *Many of the students ever ${ }_{\text {NPI }}$ climbed Mount Everest
b. Few of the students ever $_{\mathrm{NPI}}$ climbed Mount Everest
(4) a. All of the students worked hard $\Rightarrow$ All of the students worked
b. None of the students worked $\Rightarrow$ None of the students worked hard

More: negative quantifiers reverse entailment patterns
(5) Positive quantifiers - from subsets to supersets (Monotone- $\uparrow$ ):
a. $>1 / 2$ of the students worked hard $\Rightarrow$ b. $>1 / 2$ of the students worked

(6) Negative quantifiers - from supersets to subsets (Monotone- $\downarrow$ ):
a. $<1 / 2$ of the students worked hard $\Leftarrow \mathrm{b} .<1 / 2$ of the students worked


## Defining entailment in set theoretic terms

(7) Sentence entailment

- S1 entails $\mathrm{S} 2, \mathrm{~S} 1 \Rightarrow \mathrm{~S} 2$, if and only if every situation in which S 1 holds is a situation in which S 2 holds.
- $\{\mathrm{s}: \mathrm{S} 1$ holds in s$\} \subseteq\{\mathrm{s}: ~ \mathrm{~S} 2$ holds in s$\}$
(8) VP entailment
- VP1 entails VP2, VP1 $\Rightarrow$ VP2, if and only if every individual of which VP1 holds is an individual of which VP2 holds.
- $\{x$ : VP1 holds of $x\} \subseteq\{x$ : VP2 holds of $x\}$


## Conclusions so far

- Few behaves as if it contains a covert negation
- Few is processed more slowly than many


## questions

- Is the processing effect specific to many/few? generality of effect
- Is it specific to language? specificity
- If subjects focus on the larger set, does its (relative) size matter? perceptual-linguistic interactions
- What is the source of the contrast? Is it really covert negation?


## A self-guided multi-modal experimental journey

- 1. extend the scope of behavioral results
- 2. use the behavioral results as a guide for a fMRI investigation
- 3. corroborate fMRI results with lesion-based

> Hope

1. Results will reveal something important about functional anatomy - how how the monotonicity of logical operators is neurally computed.
2. They will teach us something important about the relevant function

Verification in the context of quantities: an example from numerical cognition
a. Stream of habituation of $r$ eference stimuli

b. Occasional deviant Comparandum stimulus of varying numerosity

c. Instructions: indicate whether the fourth set was
(global) - larger or smaller than the preceding ones

- same as the preceding ones
- different from the preceding ones
d. Expectations: - perfomance in keeping with Weber's Law
- no effect of instructions on performance: $r>c=c<r$

An example experiment


- An attempt to reproduce J\&C's result with different quantifier pairs <many, few>; <more-than-half, less-than-half>
- An attempt to generalize to r/C proportions beyond 2:14, 14:2
- A comparison with parallel non-linguistic instructions (<, >)

An RT experiment with the Parametric Proportion Paradigm (PPP) (with Isabelle Deschamps, McGill. Galit Agmon \& Yonatan Loewenstein, HUJI)


## A non-verbal PPP: verification with symbols

"Your task is to determine whether the instruction matches the scenario in the image, and do so as quickly as you can"


Reaction times



## Factors in this design

- Expression type

$Q$ of the circles are blue
- Quantifier Type and Monotonicity

| Fixed standar | $\left[\begin{array}{l}\text { POS: More-than-half of the circles are blue } \\ \text { NEG: Less-than-half of the circles are yellow }\end{array}\right.$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Degree | POS: Many of the circles are blue NEG: Few of the circles are yellow |  |  |  |  |  |  |
| $r=16$ | $\left[\begin{array}{llll} \therefore \because & \because & \because & \because \\ \because & \because & 0 & 0 \end{array}\right.$ |  |  |  |  |  |  |
|  | [ 4:16 | 8:1 | 12:16 | 16:1 | 24:16 | 34: | 46: |
| $=24$ |  |  |  |  |  |  |  |
|  | 8:24 | 12:24 | 16:24 | 24:24 | 34:24 | 46:24 | 58: |

- Truth-value


First PPP result: Polarity matters - RT functions


Second PPP result: Polarity difference even at the individual subject level! Less-than-half of the circles are blue

More-than-half of the circles are blue

## RT per subject - proportional quantifiers



Third PPP result: verification with analogous symbols


Fourth PPP result: Polarity $X \pm$ linguistic interaction


Less than half of the circles are blue
More than half of the circles are blue



Fifth PPP result: the Polarity effect is additive

## Possible relations between curves

Additive: Polarity effect is independent from proportion


Non-additive: Polarity effect is not independent from proportion


Permutation tests indicate that the effect is additive. $R T_{\text {diff }}$ is independent of $r / c$.

Fifth PPP result: the Polarity effect is additive

## Possible relations between curves

Additive: Polarity effect is independent from proportion


Non-additive: Polarity effect
is not independent from proportion
RT


Permutation tests indicate that the effect is additive. $R T_{\text {diff }}$ is independent of $r / c$.
$\Rightarrow$ Verification is unaffected by proportion; contrary to the focus-on-the-larger set strategy

## Results and conclusions so far

- Weber's Law: Performance curves on the PPP is more symmetric on logarithmic compression

- Quantifier Polarity: $R T_{\text {few, less-than-half }}>\mathrm{R}_{\text {many, more-than-half }}$
- No symbolic Polarity: $\mathrm{RT}_{<} \approx \mathrm{RT}$ >


- Modularity I: Polarity effects are exclusive to Language: a Polarity X instruction type ( $\pm$ linguistic) interaction effect

- Modularity II: the Polarity effect is additive ( $\mathrm{RT}_{\text {diff }}$ is independent of proportion)


## What we did last time

- The localizationist agenda: pieces of language in brain pieces.
- underscores the need for precise definitions of the language pieces and the brain pieces.
- our pieces so far are semantic: pieces of semantic knowledge for which a clear brain basis is likely to be identified.
- Polarity: certain quantifiers appear to have antonyms:
- <few, many>, <more-than-half, less-than-half>
- these pairs contrast in important ways:
- Polar quantifiers behave as if one of them contains a negation. Evidence:
- NPI licensing
- entailment reversal
- processing costs

Arguments for J\&C's view on negation in few:
negative quantifiers behave as it they contain a covert negation

Negation-containing operators license Negative Polarity Items
(2) a. *All of the students ever $_{\text {NPI }}$ climbed Mount Everest
b. None of the students ever $_{\mathrm{NPI}}$ climbed Mount Everest

Quantifiers of degree and proportion replicate this pattern
(3) a. *Many of the students ever ${ }_{\text {NPI }}$ climbed Mount Everest
b. Few of the students ever $_{\mathrm{NPI}}$ climbed Mount Everest
(4) a. All of the students worked hard $\Rightarrow$ All of the students worked
b. None of the students worked $\Rightarrow$ None of the students worked hard

More: negative quantifiers reverse entailment patterns
(5) Positive quantifiers - from subsets to supersets (Monotone- $\uparrow$ ):
a. $>1 / 2$ of the students worked hard $\Rightarrow$ b. $>1 / 2$ of the students worked

(6) Negative quantifiers - from supersets to subsets (Monotone- $\downarrow$ ):
a. $<1 / 2$ of the students worked hard $\Leftarrow \mathrm{b} .<1 / 2$ of the students worked


An RT experiment with the Parametric Proportion Paradigm (PPP) (with Isabelle Deschamps, McGill. Galit Agmon \& Yonatan Loewenstein, HUJI)



Less-than-half of the circles are yellow

Reaction times

| + |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| 0.4 | 2.8 | 0.2 | 1.1 | 1.9 |
|  | Auditory sentence | \| ${ }^{\text {\| }}$ | Picture |  |
| 0 |  |  |  |  |



## Results and conclusions so far

- Weber's Law: Performance curves on the PPP is more symmetric on logarithmic compression

- Quantifier Polarity: $R T_{\text {few, less-than-half }}>\mathrm{R}_{\text {many, more-than-half }}$
- No symbolic Polarity: $\mathrm{RT}_{<} \approx \mathrm{RT}$ >


- Modularity I: Polarity effects are exclusive to Language: a Polarity X instruction type ( $\pm$ linguistic) interaction effect

- Modularity II: the Polarity effect is additive ( $\mathrm{RT}_{\text {diff }}$ is independent of proportion)


## today's menu

- Quantifier polarity and the localizationist agenda
- an fMRI experiment with quantifiers: the brain location of polarity
- a similar experiment with brain-damaged individuals with aphasia
- Comparatives: data and problems
- an RT experiment with comparatives
- a polarity problem with comparatives
- Solution?
- monotonicity vs. negation (Ladusaw, 1979)
- the monotonicity of comparatives
- processing costs of monotonicity


## fMRI experiment

(with Isabelle Deschamps, McGill, Galit Agmon \& Yonatan Loewenstein, HUJI)


Regions in which we find Instructions X Polarity Interaction during the Composition phase


Reaction times


Same regions, Estimation phase


Same regions, Comparison phase


Strict Neural Modularity - no Language/math interactions:


The PPP in Broca's aphasia
(with Virginia Jaichenco, Martin Fuchs, UBA, Isabelle Deschamps, Laval)


Individual patients' error pattern subsequent to a lesion in Broca's region

The PPP in Broca's aphasia


Individual patients' error pattern subsequent to a lesion in Broca's region

The PPP in Broca's aphasia

Positive: Many



Positive: More than half


Negative: Less than half

Less half_P1
Less half_P2
Less half_P3
Less half_P4
Less half_P5
Less half_P6
Less half_P7

Individual patients' error pattern subsequent to a lesion in Broca's region

Aphasia versus fMRI


Patient demo - many (Spanish)


Many of the circles are blue ("YES")

Patient demo - few (Spanish)


Do participants respond on partial information: a view from comparatives


## Defining entailment in set theoretic terms

(7) Sentence entailment

- S1 entails $\mathrm{S} 2, \mathrm{~S} 1 \Rightarrow \mathrm{~S} 2$, if and only if every situation in which S 1 holds is a situation in which S 2 holds.
- $\{\mathrm{s}: \mathrm{S} 1$ holds in s$\} \subseteq\{\mathrm{s}: ~ \mathrm{~S} 2$ holds in s$\}$
(8) VP entailment
- VP1 entails VP2, VP1 $\Rightarrow$ VP2, if and only if every individual of which VP1 holds is an individual of which VP2 holds.
- $\{x$ : VP1 holds of $x\} \subseteq\{x$ : VP2 holds of $x\}$


## Ladusaw: quantifiers are either UE or DE on each argument

(9) Definitions:
a. a function is Upward Entailing (UE) iff for all $\mathrm{X} \subseteq \mathrm{Y}, \mathrm{f}(\mathrm{X}) \subseteq \mathrm{f}(\mathrm{Y})$
b. a function is Downward Entailing (DE) iff for all $X \subseteq Y, f(Y) \subseteq f(X)$

Ladusaw: quantifiers are either UE or DE on each argument
(10) Some - UE on both arguments
$\{x: x$ is an olympic swimmer $\} \subseteq\{x: x$ is a swimmer $\}$,
$\{y: y$ is a graduate student $\} \subseteq\{y: y$ is a student $\}$ :
a. Some (graduate student) (is a swimmer) $\Rightarrow$
b. Some (student) is a swimmer
c. Some student is an (olympic swimmer) $\Rightarrow$
d. Some student here is a (swimmer)

## students

## swimmers

| s.əum!Ms ग!duरıO |
| :---: |

Ladusaw: quantifiers are either UE or DE on each argument
(11) No - DE on both arguments
$\{x$ : $x$ is an olympic swimmer $\subseteq \subseteq x: x$ is a swimmer $\}$,
$\{y: y$ is a graduate student $\} \subseteq\{y: y$ is a student $\}$ :
a. No (student) (is a swimmer) $\Rightarrow$
b. No (graduate student) is a swimmer
c. No student is an (swimmer) $\Rightarrow$
d. No student here is a (olympic swimmer)

## students

## swimmers

Olympic
swimmers

## The strange case of Every

(12) from subsets to supersets \{olympic swimmer\}؟\{swimmer\}:
a. Every (student) is (an olympic swimmer) $\Rightarrow$
b. Every (student) is (a swimmer) swimmers
(13) from supersets to subsets \{graduate student\}؟\{student\}:
a. Every (student) is an olympic swimmer $\Rightarrow$
b. Every (graduate student) is a swimmer students

Back to comparatives
(14) from subsets to supersets $\{$ tall student $\} \subseteq\{$ student $\}$ :
a. there are more (tall students) than there are (professors) $\Rightarrow$
b. there are more (students) than there are (professors)

(15) from supersets to subsets $\{$ tall student\}؟\{student\}:
a. there are fewer (students) than there are (professors) $\Rightarrow$
b. there are fewer (tall students) than there are (professors)

| students | Professors |
| :--- | :--- |
|  |  |
|  | Tall |
|  | students |

(16) from subsets to supersets $\{$ fat prof\} $\subseteq\{p r o f\}$ :
a. there are more (students) than there are (professors) $\Rightarrow$
b. there are more (students) than there are (fat professors) students

| 0 <br> 0 <br> 0 <br> 0 <br> $\mathbf{0}$ <br> 0 |
| :---: |
|  |  |

(17) from supersets to subsets $\{$ fat prof $\subseteq\{$ prof $\}$ :
a. there are fewer (students) than there are (fat professors) $\Rightarrow$
b. there are fewer (students) than there are (professors)


But wait: do we really expect a "polarity effect" in comparatives?

## POS:

There are more blue circles than (there are) yellow circles
NEG:
There are fewer blue circles than (there are) yellow circles


(18) a. More [(there are) blue circles] ${ }^{U E}$ than [(there are) yellow circles] ${ }^{D E}$ b. Fewer [(there are) blue circles]DE than [(there are) yellow circles]UE
(19) Polarity effect: $\Delta R T=R T_{D E}-R T_{U E}>$ sig 0 .

Two possible accounts of this puzzle

1. Experimental (silly but may be true):

POS:
$\overline{\text { There }}$ are more blue circles|than (there are) yellow circles
NEG:
There are fewer blue circles than (there are) yellow circles



To test for this possibility, we are currently running an experiment in which there are circles in 3 colors. This forces participants to wait for the last word in the stimulus.
2. Theoretical The pieces of comparatives and NPIs - the Seuren/Rullman puzzle and a solution that would be consistent with our results
(20) As expected, NPIs are licensed only in the DE part:
a. there are more (students) than there are (profs I've ever ${ }_{N P I}$ met)
b. *there are more (students l've ever ${ }_{N P I}$ met) than there are (profs)
c. there are fewer (students I've ever ${ }_{N P I}$ met) than there are (profs)
(21) Unexpected is NPI licensing in the UE part of less-comparatives:
a. there are fewer (students) than there are (profs l've ever ${ }_{N P I}$ met)
(22) This pattern follows if the entailment properties are:
a. More [(there are) blue circles] ${ }^{\text {UE }}$ than [(there are) yellow circles] ${ }^{\text {DE }}$
b. Fewer [(there are) blue circles] ${ }^{D E}$ than [(there are) yellow circles] ${ }^{D E * D E}$ (Rullman, Heim)

