# Combinatorial Semantics is Computed in the Left Anterior Insula and is Modular 

Yosef Grodzinsky ${ }^{1,2}$, Galit Agmon¹, Yonatan Loewenstein ${ }^{1}$ and Isabelle Deschamps ${ }^{3}$

[1] The Hebrew University of Jerusalem, Israel [2] Forschungszentrum Jülich, Germany
[3] Université Laval



UNIVERSITÉ
LAVAL

## Goal:

To study the temporal dynamics and neural relation between 2 worlds the perception of quantity and the processing of quantity expressions Theoretical tools

Weber's Law and the analysis of natural language quantifiers Experimental Paradigm

Verification with quantifiers and analogous non-linguistic symbols

## Multi-Modal Measurements

RT, error rates in Broca's aphasia, fMRI signal intensity
Take home message
Extreme language/math Modularity is found in the brain in both health and brain disease

The linguistic landscape:
Verification with degree quantifiers and numerosity-containing scenarios

(1) a. Many of the dots are black J\&C:

- Decomposition

Many dots are red
NEG(few) dots are red

b. Few of the dots are red

## Arguments for the claim that few=NEG(many):

"Negative", but not "Positive" quantifiers reverse entailment patterns
(2) a. Many of the students worked hard $\Rightarrow b$. Many of the students worked
(3) a. Few of the students worked hard $\Leftarrow b$. Few of the students worked
"Negative" but not "positive" quantifiers license NPIs
(4) a. Less-than-half of the students ever ${ }_{\text {NPI }}$ climbed Mount Everest good
b. More-than-half of the students ever $_{\text {NPI }}$ climbed Mount Everest odd
(5) a. Less-than-half of the students lifted a finger ${ }_{\mathrm{NPI}}$ to help me
b. More-than-half of the students lifted a finger $r_{\text {NPI }}$ to help me

The numerosity landscape: Verification of variable quantities
a. Stream of habituation of $r$ eference stimuli

b. Occasional deviant Comparandum stimulus of varying numerosity

c. Instructions: indicate whether the fourth set was
(global) - larger or smaller than the preceding ones

- same as the preceding ones
- different from the preceding ones
d. Expectations: - perfomance in keeping with Weber's Law
- no effect of instructions on performance: $\mathrm{r}>\mathrm{c}=\mathrm{c}<\mathrm{r}$


## An example experiment



- Performance is a non-monotone function of r/c proportion
- Best fit to symmetrical curves is obtained after log compression
- Similar $\sigma$ across $r$-values
- no reported effect of instruction

But instructions DO matter! probes on performance

## questions

- Is the "negative" quantifier processing effect general?
- Is it specific to language?
- What is the source of the contrast?

Structure of the experimental argument

- Extend the linguistic domain - generality of effect
- Set up parallel linguistic and non-linguistic instructions - specificity
- Set up a verification paradigm where scenarios depict variable proportions - perceptual-linguistic interactions
- Seek the neural substrate for these computations


## An RT experiment with the Parametric Proportion Paradigm (PPP)

(with Isabelle Deschamps, McGill. Galit Agmon \& Yonatan Loewenstein, HUJI)


More-than-half of the circles are blue

NEG:
Less-than-half of the circles are yellow


Reaction times
( Auditory sentence
0.4
1

## A non-verbal PPP: verification with symbols

"Your task is to determine whether the instruction matches the scenario in the image, and do so as quickly as you can"


## First PPP result: Polarity matters - RT functions

| Splitting the |
| :--- |
| previous graph: |
| 17 subjects X 2 |
| quantifiers X 16 |
| T/F 272= trials |

$$
\mathrm{T} / \mathrm{F} 2 \overline{72=\text { trials }}
$$

NB: same results for $r=24$, and for the manylfew contrast

## Less than half of the circles are blue

More than half of the circles are blue

$$
\text { quantifiers X } 16
$$




## Second PPP result: verification with analogous symbols



Third PPP result: Polarity $X \pm$ linguistic interaction


Less than half of the circles are blue
More than half of the circles are blue



The PPP in Broca's aphasia
(with Virginia Jaichenco, Martin Fuchs, UBA, Isabelle Deschamps, Laval)


Individual patients' error pattern subsequent to a lesion in Broca's region

The PPP in Broca's aphasia - 3 patients


Individual patients' error pattern subsequent to a lesion in Broca's region

The PPP in Broca's aphasia - 7 patients


Individual patients' error pattern subsequent to a lesion in Broca's region

Patient demo - many (Spanish)


Many of the circles are blue ("YES")

## Patient demo - few (Spanish)



## Modeling the HRF for each phase

(with Isabelle Deschamps, McGill, Galit Agmon \& Yonatan Loewenstein, HUJI)


Where we find Instructions X Polarity Interaction during the
Composition and Comparison phases




Reaction times


Strict Neural Modularity - no Language/math interactions:


## implications

- Our brains do arithmetic and talk about it in distinct ways, and distinct neural substrates
- A new locus for specialized linguistic activity is uncovered, supporting the processing of


## the end

## yosef.grodzinsky@mail.huji.ac.il

Funding:
NIH (NIDCD)
Canada Research Chairs (CRC)
SSHRC Canada
Humboldt Foundation
Research Award
Forschungszentrum Jülich

Israel Science Foundation
ELSC, HUJI

Collaboration:
Katrin Amunts, Stefan Heim,
Peter Pieperhoff
Virginia Jaichenco, Martin Fuchs,
María Elína Sanchez, Yamila Sevilla UBA
Lew Shapiro, Tracy Love

